Заказ OnLine : Ваша корзина
Железосодержащие силикаты управляют космической химией
Специалисты по компьютерной химии из Испании предполагают, что железо, содержащееся в космических пылинках, может способствовать протекающему в глубинах космоса превращению атомов водорода в молекулярный водород.
Даже очень небольшое содержание железа в межзвездной силикатной пыли может помочь атомам водорода объединиться в молекулы H2.
Среднее разрежение межзвездной среды в несколько миллиардов раз меньше, чем разрежение, которое могут создавать самые лучшие камеры в лабораториях Земли. Это приводит к тому, что столкновения между атомами водорода в космосе крайне редки, а если учесть и то обстоятельство, что к образованию молекулярного водорода приводит только одно из сотни тысяч таких столкновений, можно было бы предположить исчезающе малую вероятность обнаружения молекулы H2 в космосе.
Однако во вселенной много молекулярного водорода. Несмотря на то, что многие исследователи изучали роль силикатной пыли в формировании молекул водорода, большая часть работ, проводившихся до настоящего времени, рассматривала в качестве посредника, позволяющего одиноким атомам водорода встретиться и сформировать молекулу, силикат мания (Mg2SiO4).
В новой работе применение функционала плотности (DFT) позволило Альберту Римоле и его коллегам из Автономного Университета Барселоны обнаружить, что спариванию атомов водорода способствует даже небольшое количество ионов Fe2+ в зернах силиката магния.
Исследователи изучили свойства связи Fe–H и обнаружили, что она может участвовать в окислительно-восстановительном процессе, в результате которого атомы водорода восстанавливаются до H–, а Fe2+ окисляется до Fe3+, а образующаяся при этом связь Fe-H прочнее связи Mg–H. Когда соседний со связью Fe–H ион магния захватывает еще один атом водорода, происходит рекомбинация атомов водорода и образование молекулы H2. Определенная с помощью расчетов прочность связи Fe–H позволяет предположить, что в глубинах космоса Fe2+ может удерживать водород в течение длительного времени, ожидая подходящую пару для отдельного атома.