АРГЕНТУМ 107
Лабораторное оборудование

(495) 232-18-32, +7 965-449-02-50
Поиск:

Заказ OnLine : Ваша корзина

Зарядим метанолом водородные топливные элементы

Исследователи из Германии и Италии разработали способ получения газообразного водорода из метанола при низких значениях температуры и давления. Выделению водорода способствует рутений содержащий катализатор с пинцерным лигандом.

Важность результатов исследования в особенности определяется тем, что оно делает возможным применение метанола в качестве источника водорода для топливных элементов, в конструкцию которых входят протон-обменные мембраны. Такие топливные элементы генерируют электроэнергию, перерабатывая водород, в результате чего единственным продуктом сгорания является только вода, поэтому они рассматриваются как перспективные системы для экологически чистых транспортных средств нового поколения.

В принципе, топливные элементы могут вырабатывать энергию за счет сжигания или другого способа переработки метанола, однако такие топливные элементы отличаются меньшей эффективностью, они менее долговечны и устойчивы по сравнению с водородными топливными элементами. Однако трудности с адаптацией водородных топливных ячеек к транспортным средствам связаны со сложностями в хранении водорода и работы с ним. Хорошо известен процесс разрушения метанола с выделением водорода – риформинг, однако для его реализации требуются высокое давление и температуры выше 200°C, что делает его непрактичным для применения к переработке метанола в водород в конструкционной схеме обычного автомобиля. Лабораторное оборудование и химреактивы

Рутениевый комплекс катализирует трехстадийную трансформацию метанола, на каждой из стадий высвобождается водород.

Как заявляет руководитель исследования, Маттиас Беллер (Matthias Beller) из Университета Ростока, идеальным было бы создание жидкой системы для накопления энергии – именно поэтому столь перспективно разработка эффективной системы конверсии, позволяющей использовать метанол в качестве источника водорода.

Исследователи получили серию растворимых в метаноле катализаторов, в которых центральный атом рутения был координирован с атомом азота и двумя атомами фосфора, входящими в состав фосфорорганического пинцерного лиганда. В присутствии воды и гидроксида натрия катализатор ускоряет конверсию метанола в формальдегид, при этом высвобождается водород. На следующем этапе происходит окисление муравьиного альдегида до муравьиной кислоты, опять же с выделением водорода, а муравьиная кислота, в свою очередь, расщепляется на водород и диоксид углерода. Исследователи впервые обнаружили каталитическую систему, в которой один и тот же катализатор ускоряет реакцию трех различных субстратов, образующихся по мере увеличения глубины превращения метанола, позволяя высвобождать три моль водорода на один моль взятого метанола. Важным фактором, потенциально позволяющим в перспективе использовать систему в настоящих топливных ячейках является то, что каталитическая реакция протекает при температуре ниже 100°C и нормальном атмосферном давлении.

Беллер отмечает, что хотя уже наблюдается достаточное количество молекул водорода, образование которых может обеспечить молекула катализатора до своей дезактивации и высокая скорость реакции, это параметры, которые можно и нужно увеличить. Исследователь уверен, что система может быть значительно модифицирована и ее производительность будет повышена за счет тонких изменений строения металлоорганического катализатора.

Тем не менее препятствием на пути к немедленному использованию метанола в качестве источника для водородного топлива является относительно высокие энергетические затраты на производство самого метилового спирта. Валери Дюпон (Valerie Dupont) из Университета Лидса, также изучающий системы получения водорода с помощью инициированного паром риформинга отмечает, что исследователи из группы Беллера получили хороший результат, но для практического применения необходима существенное понижение производства метанола.

Яндекс цитирования Рейтинг@Mail.ru
adultfriendfinder.com gratis counter счетчик посещений